

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Prof. Dr. Petra Schneider Magdeburg-Stendal University of Applied Sciences

Nature-based solutions for Slope Stabilisation and Landslide Precaution

1

Nature based Solutions

Introduction to Nature-based Solutions (NbS)

International Union for Conservation of Nature and Natural Resources (IUCN): "Actions to protect, sustainably manage and restore natural or modified ecosystems, which address societal challenges effectively and adaptively, while simultaneously providing human well-being and biodiversity benefits."

Societal challenges (Cohen-Shacham et al., 2016)

Nature based Solutions

The importance of NbS are highlighted in the Sendai Framework for Disaster Risk Reduction 2015-2030 as an effective technique to reduce disaster risk, adapt to climate change and strengthen community resilience.

The application of nature-based solutions for **slope stabilization and protection** is now used world-wide as an efficient, cost effective and eco-friendly approach.

The **role of plants** in improving slope stability and minimizing soil erosion can be divided into two categories; **hydrological and mechanical mechanisms**.

NbS Options for Landslide Mitigation - Overview

Category - Physical process	NBS measure	
NBS for surface protection and erosion control - Living Approach	Hydroseeding	
	Turfing	
	Tree bushes direct/pit planting (live	
	transplanting)	
	Live/intert fascines and straw wattles	
	Bush mattresses	
	Bush layering	
	Live Stakes (live poles)	
	Live smiles	
NBS for surface protection and erosion control - Combined Living/Not living Approach	Geotextiles (Rolled Erosion Control Products)	
	Drainage Blankets	
	Beach replenishment/nourishment	
	Rip-rap	
	Rock dentition	

Source: www.larimit.com, cited in Kalsnes & Capobianco, 2019, Klima 2050 Report No 16

NbS Options for Landslide Mitigation - Overview

Category - Physical process	NBS measure	
Modifying the slope geometry - mass distribution	Terracing	
Modifying the surface water regime - surface drainage	Vegetation - hydrological effects	
	Live pole drains	
	Live/rock check dams	
Modifying the mechanical	Vegetation - mechanical effects	
characteristics of the unstable mass		
Transfer of loads to more competent strata	Soil nail and root technology (SNART) - Hybrid	
Retaining structures to improve the slope stability	Vegetated gabions (Hybrid)	
	Live crib walls	
	Vegetated slope gratings	
Passive control works for dissipating	Afforestation	
the energy of a landslide	Live gully breaks	

Source: www.larimit.com, cited in Kalsnes & Capobianco, 2019, Klima 2050 Report No 16

7

Stabilisation Options: Surface Protection and Erosion Control

Surface Seeding

Hydroseeding is suitable for steeper or smooth slopes in mild climate conditions

Forest track

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Surface Seeding

Noise barrier

After 1 year

After 7 years

Hochschule

When using algae products as adhesives, newly planted hardwoods can be sprayed

Rock embankments or quarries can only be greened with hydroseeding

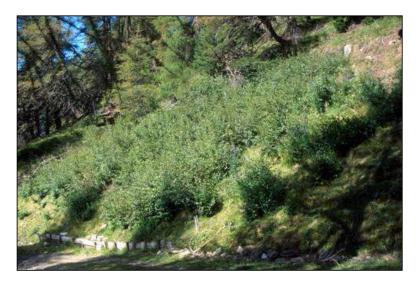
Nature-based solutions for Slope Stabilisation and Landslide Precaution Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria) 9

Surface Protection – Turfing / Pieces of Vegetation

Forest road 1 month after placing the vegetation pieces


Lifting off pieces of vegetation Forest path

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)


Surface Protection – Tree Planting

Forest path 9 year old planting with green alder

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria) Nature-based solutions for Slope Stabilisation and Landslide Precaution

Forest path 5 year planting

Erosion Protection Mats – Geotextiles

Fabric as erosion protection (coconut, straw, jute, grass... and artificial)



Figure source: GLAESERgreen

During the first (1-6) years these fabrics **secure the vegetation-free slope** or embankment. The vegetation can sprout under the coconut net and slowly grow through the fabric so that complete green cover can be established. If necessary, trees can also be planted in the embankments.

Slope inclination 50-70° requires anchoring (ground spikes, e.g. wood)

Criteria	Coconut fabric 400g	Coconut fabric 700g	Coconut fabric 900g
Material	Coconut	Coconut	Coconut
Mesh sizes	20mm	10mm	8mm
Recommended for slopes	0-30°	30-50°	50-70°
Lifespan	2-3 years	3-4 years	4-5 years

Stabilisation Options: Technical and Biological Dewatering

Technical Dewatering

Alpine path Passeier

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Technical Dewatering

Hochschule Magdeburg • Stendal

Stone drains on the highway

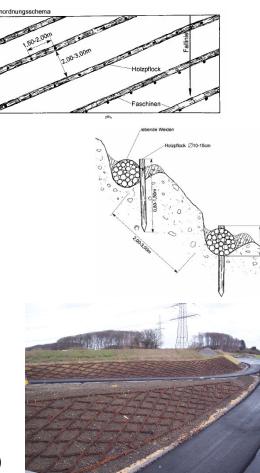


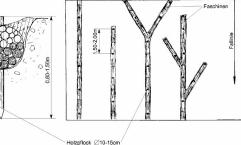
Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Biological Dewatering through Drain Fascines

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria) Nature-based solutions for Slope Stabilisation and Landslide Precaution

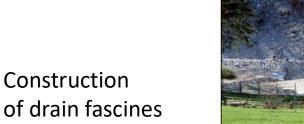
CC BY-SA 3.0

Function: Securing 10-20 cm soil layers and drainage


CC BY-SA 3.0

16

Biological Dewatering through Drain Fascines



After 19 years

Nature-based solutions for Slope Stabilisation and Landslide Precaution

17

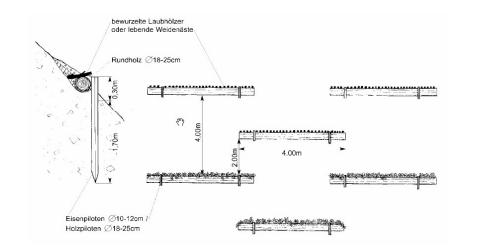
Biological Dewatering through Drain Fascines

After 3 years

After 7 years

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Nature-based solutions for Slope Stabilisation and Landslide Precaution


After 1 year

Stabilisation Options: Securing 10-20 cm ground instabilities

Stabilisation Pilot Walls

Hochschule Magdeburg • Stendal

rupture

Just built pilot Walls

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria)

Stabilisation Pilot Walls

After 4 years

After 8 years

After 16 years

3 year old planted pilot walls

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria) Nature-based solutions for Slope Stabilisation and Landslide Precaution

Stabilisation Pilot Walls

Planted pilot wall after 6 months

Planted pilot wall just built

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria)

Nature-based solutions for Slope Stabilisation and Landslide Precaution

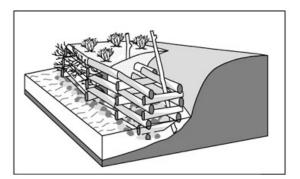
Hochschule Magdeburg • Stendal

Living Slope Grate

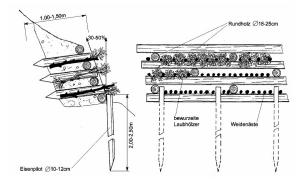
embankment demolition

After 6 months

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria) Nature-based solutions for Slope Stabilisation and Landslide Precaution planted with green alder after 4 years $_{_{23}}$


Stabilisation Options: Securing 30-200 cm ground instabilities

Live Crib Walls



Simple live crib wall, just built

after several years

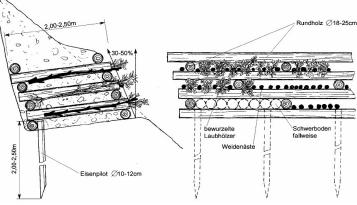
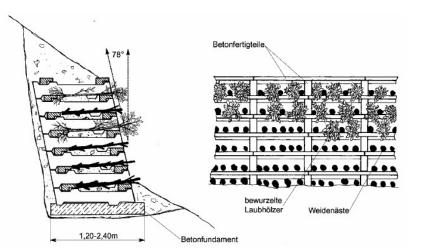


Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria)

Live Crib Walls (Wood)

Planted double wooden live crib wall just built

Securing a slip slope after the failure of gabions After 4 months


After 6 years

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria)

Rock Crib Walls (Concrete)

Steep concrete crane walls as supporting bodies: subsequent planting is difficult to carry out

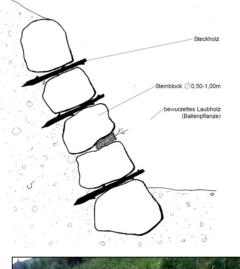
After 3 years

Detail: with sticks

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria) 27

Rock Crib Walls


Construction of a rock crib wall

Planted with climbing plants, after 2 years

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria) Nature-based solutions for Slope Stabilisation and Landslide Precaution

Planted Rock Wall Using Plants Sticks

Block stone wall planted with green alder after 7 years

Block stone wall planted with hydroseeding after 17 years

Details of planting after 17 years

Block stone wall planted with various hardwoods after 6 years

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Figure source: Florineth, 2010 (Universität für Bodenkultur, Vienna, Austria)

29

Gabions – Planted Wire Stone Baskets

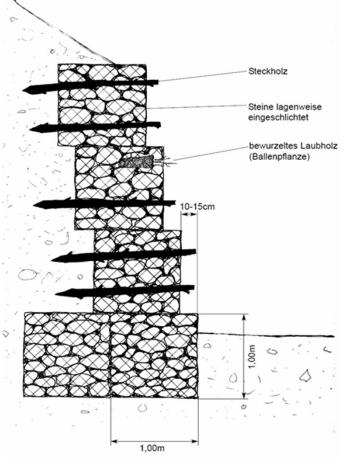


Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Nature-based solutions for Slope Stabilisation and Landslide Precaution

Construction of Gabions

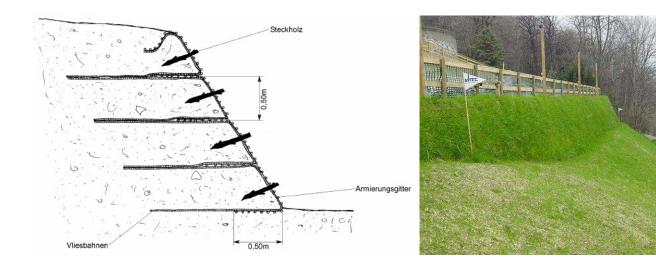
Insert the willow cuttings through the galvanized grid down to the natural soil

Gabions – Planted Wire Stone Baskets

Building up gabions: the cavities are filled with earth

Gabions planted and grassed with lawn tiles after 5 months

Detail of gabions


Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Reinforced Earth Walls

<u>Function:</u> Valley or slope side retaining wall, protective dam (noise, rockfall, avalanches), slope protection

<u>Use/Purpose</u>: Traffic infrastructure construction: road/railway construction,

footpaths/cycle paths; Foundation and civil engineering, garden and landscape design, hydraulic engineering

Reinforced Earth: Supporting structure made of compacted soil layers embedded in plastic mats

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Reinforced Earth Walls



after 10 months planted with hydroseeding

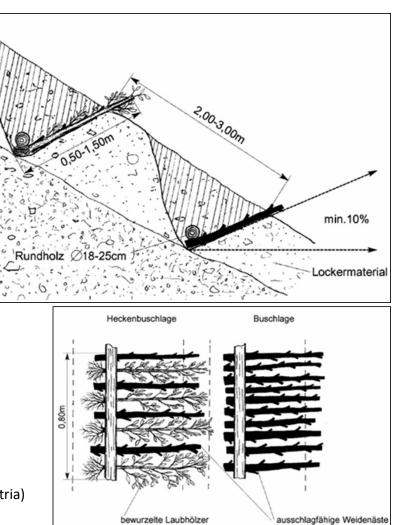
Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Planting the Gabions with Turf

Fixing the lawn sod with a wire mesh

After 1 month

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)



Hedge Cuts Sticks Layering Living Stabilisation

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Nature-based solutions for Slope Stabilisation and Landslide Precaution

35

Hedge Cuts Sticks Layering

Securing the loose material with layer construction

After 6 months

Figure source: Florineth, 2008 (Universität für Bodenkultur, Vienna, Austria)

Nature-based solutions for Slope Stabilisation and Landslide Precaution

After 20 years

After 4 years

River Bank Stabilisation

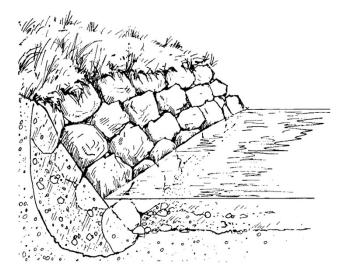
Options for River Bank Stabilisation

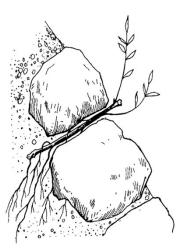
Function: Pushing the flowing water away from the bank

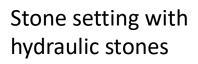
Bushes to protect erosion holes for sediment retention: For hollow banks and scours, insert branches into the hollow forms and anchor them with stakes (good spruce).

Rough surface trees for erosion protection: natural construction, quickly effective; Fastening and anchoring a well-branched conifer with a good crown at the base of the trunk, orientation almost parallel to the bank with the tip in the direction of the flow.

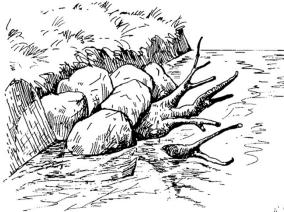
Groynes: Dam bodies protruding from the bank into the water on one side; serve to secure banks, to repel currents or to concentrate runoff at low water levels


Flow Guiding Dams


- Flow Guiding Dams: Measures predominantly with dead or living building elements in places with strong attack on the embankment; selection according to purpose and location.
 - Gabions
 - Masonery
 - Stone box: rock crib walls made of wood and stones


Figure source: Zander, 2013 (TU München, Germany)

River Bank Stabilisation

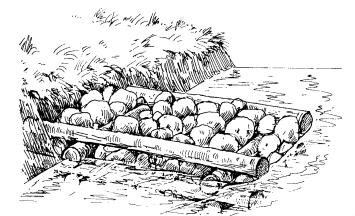


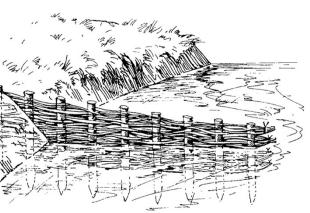
Stone setting with living wood

Willow spreading layer with fascine roller to secure the base of the embankment

Figure source: Zander, 2013 (TU München, Germany)

Types of Groynes – Living and Non-Living

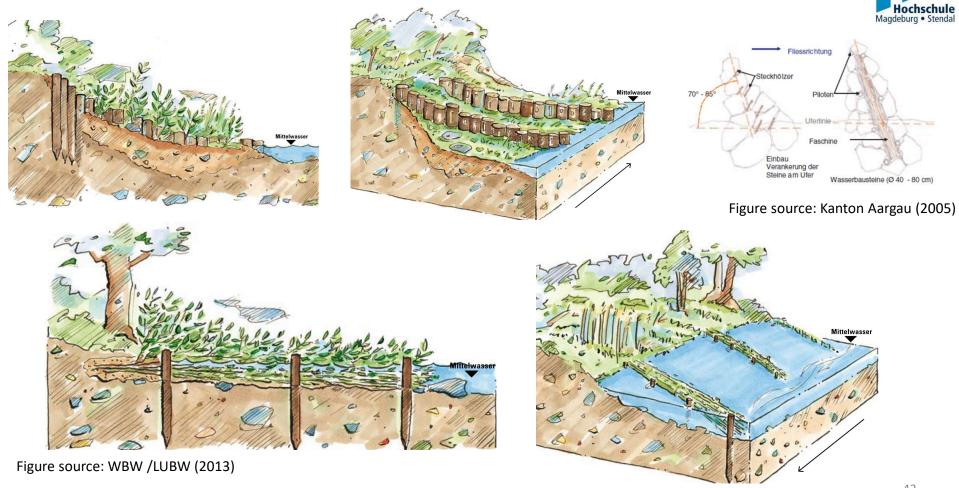


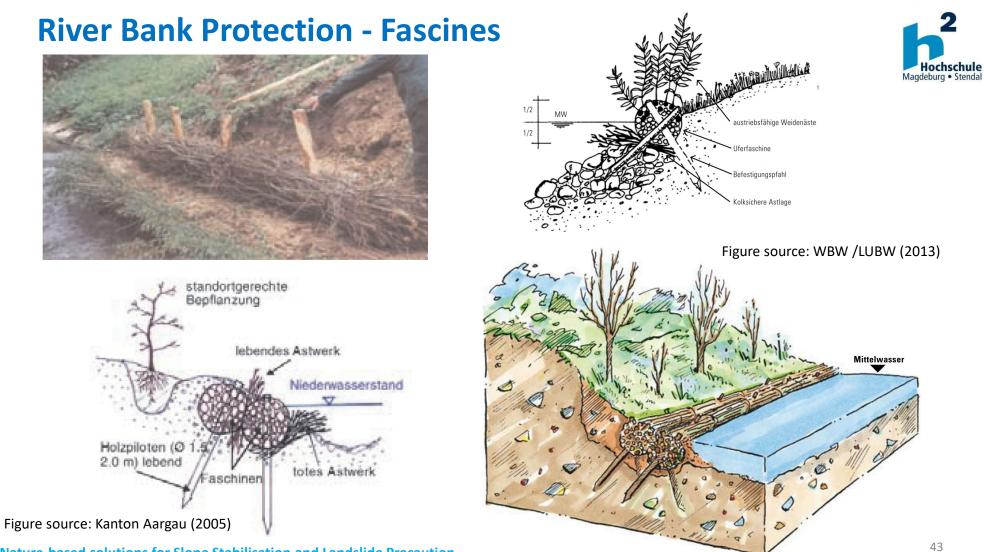

Rhizome groyne, weighted with stones

Wattle groyne

Figure source: Zander, 2013 (TU München, Germany)

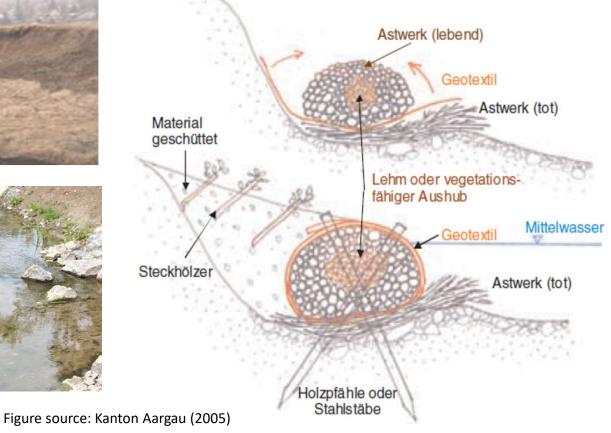
Nature-based solutions for Slope Stabilisation and Landslide Precaution

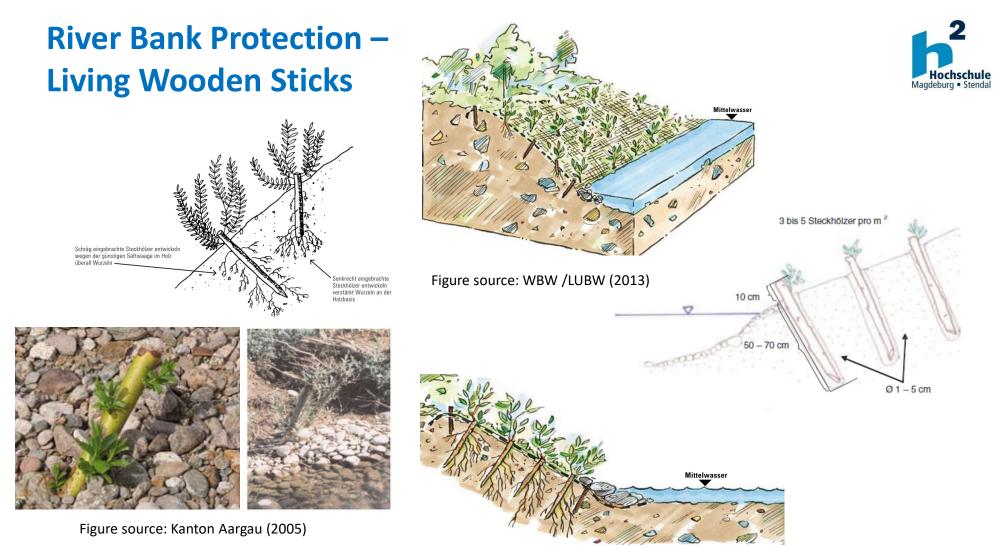


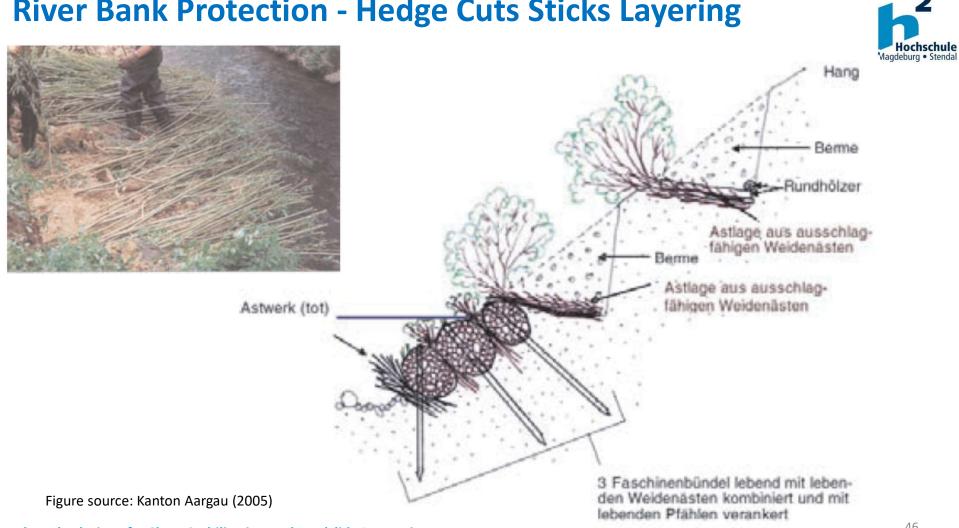

Stone box groyne

Bank spur made of hydraulic stones

River Bank Protection – Living Groynes




River Bank Protection - Sinking Rollers



River Bank Protection - Hedge Cuts Sticks Layering

Nature-based solutions for Slope Stabilisation and Landslide Precaution

46

River Bank Stabilisation - Rhizomes

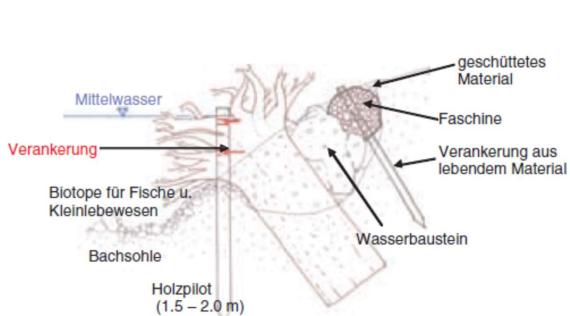


Figure source: Kanton Aargau (2005)

References

Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; Welling, R.; Walters, G. (2019). Core principles for successfully implementing and upscaling Nature-based Solutions, Environmental Science & Policy, Volume 98, 2019, pp. 20-29, ISSN 1462-9011, https://doi.org/10.1016/j.envsci.2019.04.014

Florineth, F. (2008). Ingenieurbiologische Sicherungsmethoden an Straßenböschungen, Universität für Bodenkultur, Vienna, Austria, available online: <u>https://www.slideserve.com/quentin-lott/ingenieurbiologische-sicherungsmethoden-an-stra-enb-schungen</u>

Florineth, F. (2010). Wirksamkeit von ingenieurbiologischenHolzbauwerken zur Hang- und Böschungssicherung Machbarkeit und Grenzen, Universität für Bodenkultur, Vienna, Austria, available online: <u>https://bfw.ac.at/050/pdf/IHG_26_05_2010_Florineth.pdf</u>

Kalsnes, B.; Capobianco, V. (2019) Nature-based Solutions. Landslides Safety Measures, Klima 2050 Report No 16, ISBN: 978-82-536-1638-4, SINTEF Community, Høgskoleringen 7 b, PO Box 4760 Sluppen, N-7465 Trondheim

Kanton Aargau, Departement Bau, Verkehr und Umwelt, Abteilung Landschaft und Gewässer (2005). Renaturierungs- und Unterhaltsarbeiten an Gewässern, Praxishilfe, available online: https://www.ag.ch/media/kanton-aargau/bvu/umwelt-natur/hochwasserschutz-und-gewaesser/gewaesserunterhalt/praxishilfe-renaturierungs-und-unterhaltsarbeite

WBW Fortbildungsgesellschaft für Gewässerentwicklung mbH; LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (2013). Ingenieurbiologische Bauweisen an Fließgewässern, Teile 1 bis 3, available online: https://pudi.lubw.de/detailseite/-/publication/51092

Zander, J. (2013). Ingenieurbiologie Wasserbau – Grundsätze des naturnahen Wasserbaus, available online: https://www.slideserve.com/abia/grunds-tze-des-naturnahen-wasserbaus

Questions?