

Research on Natural Hazards: Focus Landslides, Earthquakes, Dam Breaks

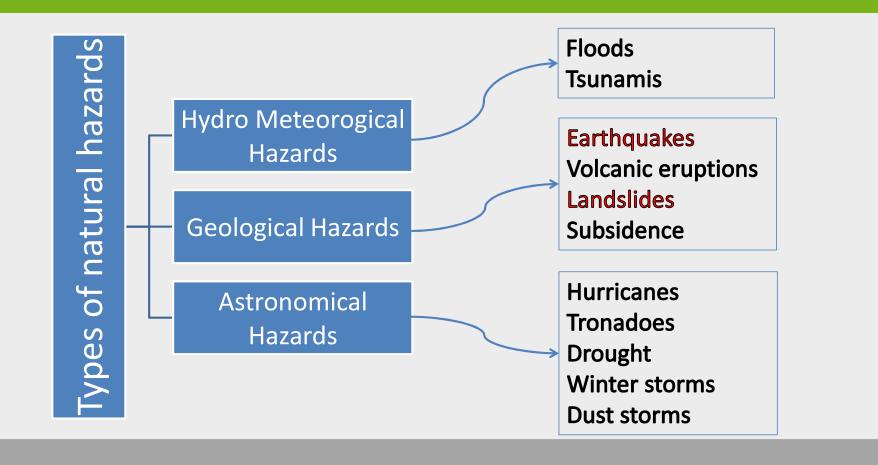
Part 1 - Introduction of Approaches to Natural Hazards Modelling

Speaker:	Dr. Fengqing Li Hochschule Magdeburg-Stendal
Place:	Hochschule Magdeburg-Stendal
Date:	09.11.2023

Natural hazards

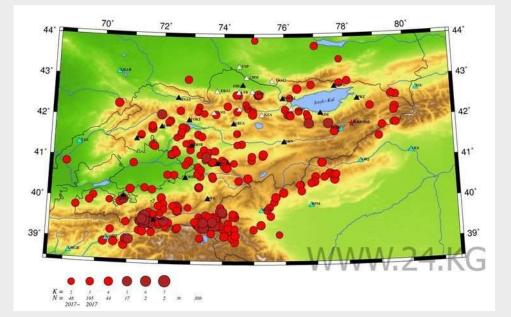
Definition

- Natural hazards are naturally occurring physical phenomena having atmospheric, geologic or hydrologic origin.
- * Natural hazards are not entirely natural for people are also agents of disaster.


Hazards' Human Costs

- Every year natural disasters leave...
 - 4,000,000 homeless
 - 46,000 injured
 - 5520 dead
- These figures do not include the recent tsunami in Asia (273,000) and Hurricane Katrina (1000)

Source: The International Red Cross


Types of natural hazards

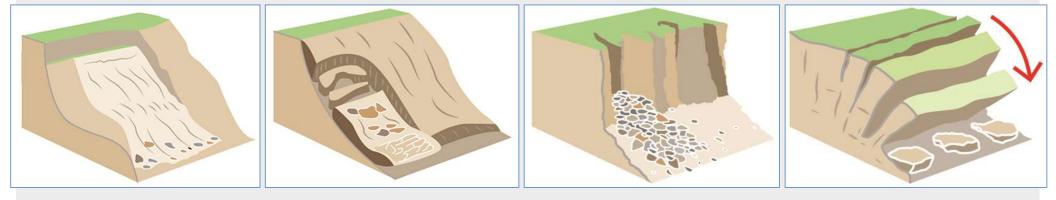
Earthquake

- An earthquake is a shaking of the ground caused by sudden slippage of rock masses below or at the surface of the earth.
- It is a wave-like movement of the earth's surface.

In 2017, a total of 11,976 earthquakes were registered in Kyrgyzstan. 308 earth shocks reached 2-3 points or higher. There were no 6- and 7-point earthquakes.

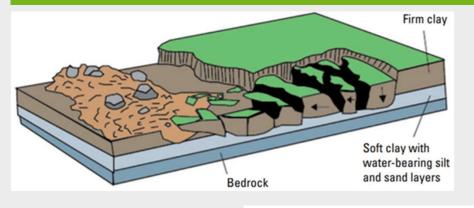
Landslide

Landslide


- A landslide is a massive outward and downward movement of slope-forming materials.
- The term landslide is restricted to movements of rocks and soil masses.
 These masses may range in sized from card to entire mountainsides.
- Their movements may vary in velocities.
- Landslide as a geological hazard is caused by earthquake or volcanic eruption.
- This initiated when a section of a hill slope or sloping section of a mountain is rendered weak to support its own weight.

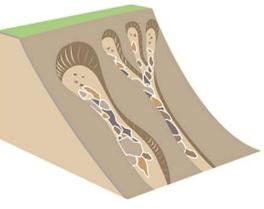
In 2017 a massive torrent of mud came down on the village of Ayu in Kyrgyzstan. It caused that 24 people were buried after 11 houses were hit by the landslide.

Common types of landslides



a) *Rotational slides* move along a surface of rupture that is curved and concave b) *Translational slides* occurs when the failure surface is approximately flat or slightly undulated c) *Rotational slides* free falling of detached bodies of bedrock (boulders) from a cliff or steep slope

d) *Rotational slides* occurs when one or more rock units rotate about their base and collapse



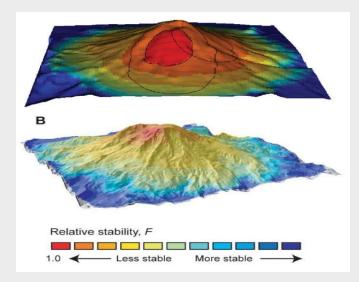
Common types of landslides

e) Lateral spreading occurs when the soil mass spreads laterally and this spreading comes with tensional cracks in the soil mass

 f) *Debris flow* down slope movement of collapsed, unconsolidated material typically along a stream channel

Mitigation strategies

- Hazard mapping
- Land use
- Retaining walls
- Surface drainage control works
- Engineered structures
- Increasing vegetation cover
- Insurance



a) Earthquake-Induced Landslide Models

Scoops3D

Scoops3D evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). It provides the least-stable potential landslide for each DEM cell, as well the associated volumes and (or) areas.

Horizontal Seismic Coefficient, k _h	Description		
0.05 - 0.15	In the United States		
0.12 - 0.25	In Japan		
0.1	"severe" earthquakes		
0.2	"violent, destructive" earthquakes	Terzaghi [4]	
0.5	"catastrophic" earthquakes		
0.1 - 0.2	Seed [2], FOS ≥ 1.15		
0.10	Major Earthquake, FOS > 1.0	0	
0.15	Great Earthquake, FOS > 1.0	Corps of Engineers [5]	
1/2 to 1/3 of PHA	Marcuson [6], FOS >1.0		
1/2 of PHA	Hynes-Griffin [7], FOS > 1.0		

Eq. 0.8 refers to extreme earthquake

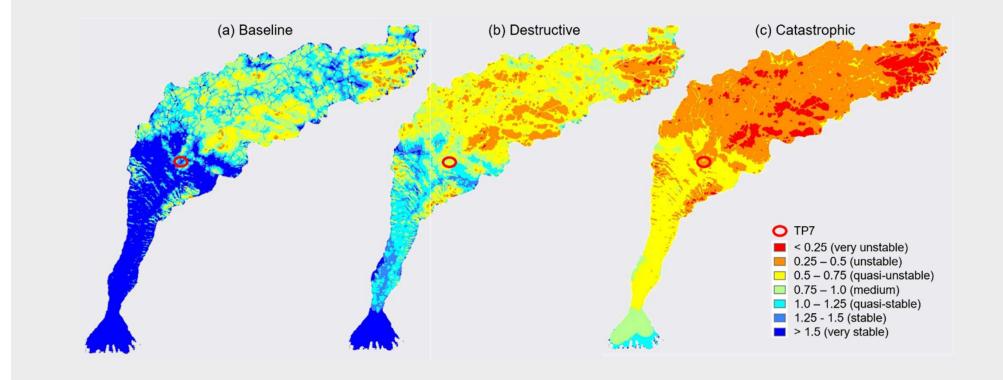
Input parameters

DEM file name:	
	Horizontal resolution: 27.5270697393
D:\Scoops3D\DEM\UTM\dem.mls.30m.asc Browse	Minimum elevation: 565.0
bi (beobjab) (beinto initiaeniniasconitase	Maximum elevation: 4449.0
	Length units: m
Subsurface Conditions	
Material properties:	
Number of layers:	
	r file C 3D variably saturated file
Groundwater configuration: C None C Ru C Piezometric surface file C 3D groundwater	
Groundwater configuration: C None Ru C Piezometric surface file C 3D groundwater Method for water	
Groundwater configuration: C None C Ru C Piezometric surface file C 3D groundwater Method for water of Earthquake loading:	
Groundwater configuration: C None Ru C Piezometric surface file C 3D groundwater Method for water	content:
Groundwater configuration: C None Ru C Piezometric surface file C 3D groundwater Method for water of Earthquake loading: Horizontal pseudo-acceleration coefficient (fraction of g) 0.5	content:
Groundwater configuration: C None Ru Piezometric surface file 3D groundwater Method for water of Earthquake loading: Horizontal pseudo-acceleration coefficient (fraction of g) 0.5 Stability Analysis	content:
Groundwater configuration: C None C Ru C Piezometric surface file C 3D groundwater Method for water of Earthquake loading:	content:
Groundwater configuration: C None C Ru C Piezometric surface file C 3D groundwater Method for water of Earthquake loading: Horizontal pseudo-acceleration coefficient (fraction of g) 0.5 Stability Analysis Limit-equilibrium method:	content:

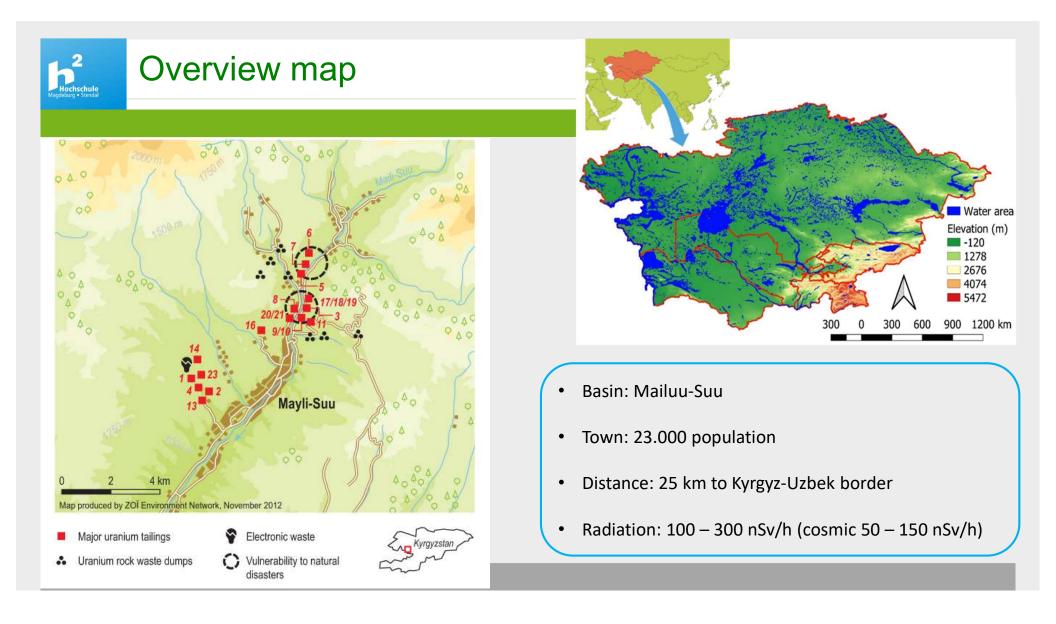
Layer #	Cohesion (kPa)	Angle of internal friction	Unit weight (kN/m^3)	Ru
1	17.68	30.26	19.7	0.15

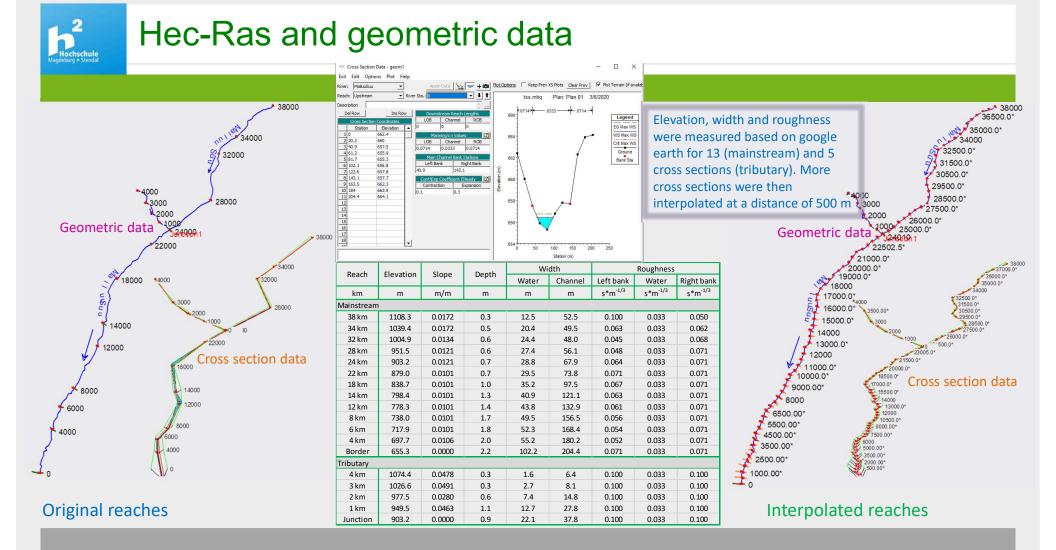
Laver	Depth (m)	Cohesion (kPa)	Angle of internal friction (°)	Unit weight (kN/m³)	Ru coefficient
L01	4.0	11.6	36.0	19.2	0.13
L02	5.2	11.3	32.3	19.2	0.10
L03	4.0	8.8	31.0	20.0	0.12
L04	2.0	40.0	23.0	19.1	0.26
L05	2.5	-	-	21.0	0.19
L06	4.3	16.7	29.0	19.6	0.12
Mean	3.7	17.7	30.3	19.7	0.15

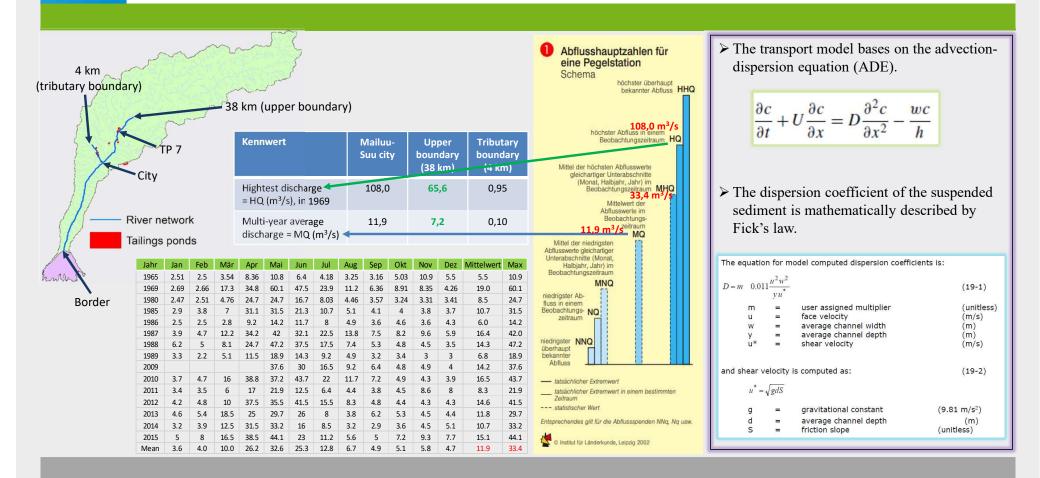
$$R_u = \frac{u}{\gamma z}$$


u is the pore-water pressure (10 kPa); γ is the unit weight of the soil; z is the depth below ground

Scoops3D: Example


LS.eq0.8.scp - fine search # 71, 100.% co	mplete		129569	tri	al s	ur	face	25				/
MLS.eq0.8.scp - Search node: 1969,	1753:	fine	search	#	72		10	%	completed.			
129569 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1777;	fine	search	#	72	а С	30	%	completed,			
129570 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1801;	fine	search	#	72		40	%	completed,			
129570 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1825;	fine	search	#	72		50	%	completed,			
129570 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1945,	1921;	fine	search	#	72		60	%	completed,			
129572 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1921;	fine	search	#	72		70	%	completed,			
129572 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1945;	fine	search	#	72		80	%	completed,			
129572 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1969,	1969;	fine	search	#	72		90	%	completed,			
129572 trial surfaces analyzed												
LS.eq0.8.scp - fine search # 72, 100.% co												
MLS.eq0.8.scp - Search node: 1993,	1825;	fine	search	#	73		20	%	completed,			
129572 trial surfaces analyzed												
MLS.eq0.8.scp - Search node: 1993,	1849;	fine	search	#	73		50	%	completed,			
129572 trial surfaces analyzed							-					
LS.eq0.8.scp - fine search # 73, 100.% co	mplete	, 3	129572	tri	al s	ur	face	25				
MLS.eq0.8_output\MLS.eq0.8_slope_out.asc												
MLS.eq0.8_output\MLS.eq0.8_fos3d_out.asc												
MLS.eq0.8_output\MLS.eq0.8_ordfos3d_out.as	C											
MLS.eq0.8_output\MLS.eq0.8_fosvol_out.asc												
MLS.eq0.8_output\MLS.eq0.8_spheres_out.okc												
MLS.eq0.8_output\MLS.eq0.8_filtergrid_out.												
MLS.eq0.8.scp - Successful execution of Sci	oops3D	vers.	ion num	ber	1.1							

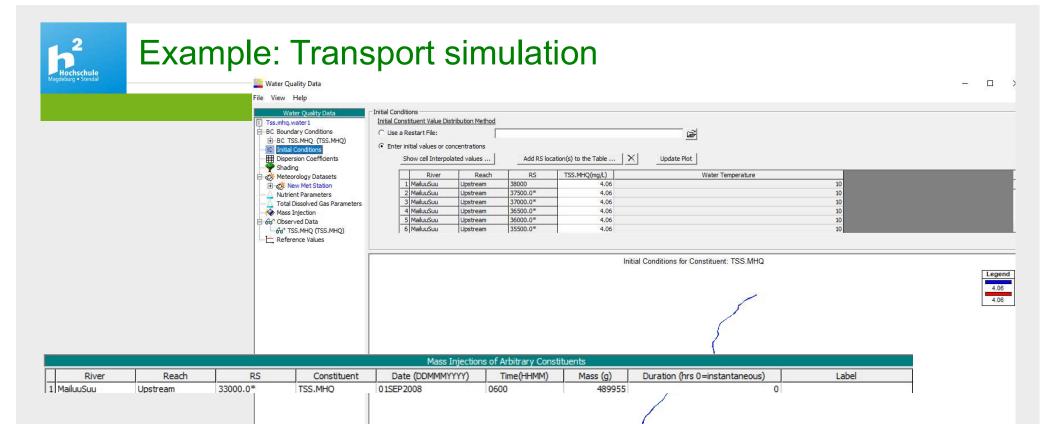

b) Transport Models


- 14 out of 23 tailings ponds were included;
- ➢ 6 ponds were remediated or classified into rock wastes;
- 3 ponds are not in the reach of river.

\wedge	Tailings ponds	Neighbouring reach	Volume (m ³)
\bowtie	1	T3000	84000
<i>,</i> ,	2	T2000	65000
Legend	4	T3000	115000
Live a live a sure also	5	S32500	111000
Uranium waste	6	S33500	150000
TP	7	S33000	600000
Former TP	8	S31000	90000
— CS	9	S31000	115000
Landuse	10	S31000	50000
 Town area	12	S24000	2000
Uranium process site	13	T2000	40000
Buildings	14	T4000	99000
Water	19	S31000	2000
— Tributary	23	T3000	25000
- Main river	3	S31000	Remediation
	17	S31000	Destroyed
Elevation 885	18	S31000	Remediation
	20	S30500	No tailings
1663	21	S30500	No tailings
0 1 2 km	22	S30500	No tailings
1 70000	11	Remote location	70000
1:70000	15	Remote location	47000
	16	Remote location	303000

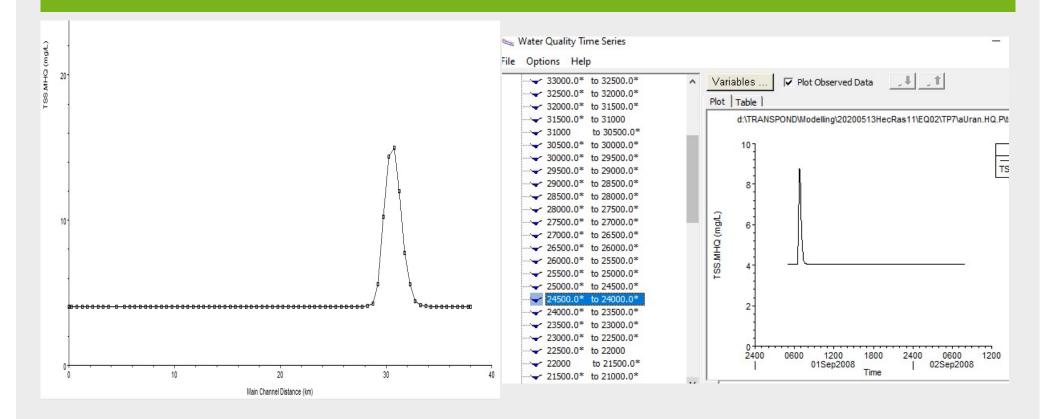
Discharge & dispersion coefficient

Hochschule Magdeburg • Stendal	Example: Ge	ometric profile		
Magdeburg • Stendal	View Options GIS Tools Help 王玉麗 擎 m 上上上述 武武 anhq an 01 om 1	File E Tool adtors Junct.	Reach Image Image <th< th=""><th></th></th<>	
			100.00" 500.00" 500.00"	

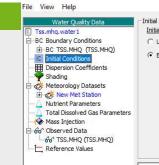


Example: Flow simulation

Unsteady Flow Dat	a - unst1			- 🗆 X	
e Options Help					
scription : Boundary Conditions	Initial Condition	ns		🔅 🛄 🛛 Apply Dat	
		Boundary Co	ndition Types		
Stage Hydrograph	Flow H	ydrograph	Stage/Flow Hydr.	Rating Curve	
Normal Depth	Lateral I	nflow Hydr.	Uniform Lateral Inflow	Groundwater Interflow	
T.S. Gate Openings	Elev Con	trolled Gates	Navigation Dams	IB Stage/Flow	
Rules	Prec	ipitation			
	ļ	Add Boundary C	ondition Location		
Add RS	Add SA/2D	Flow Area	Add SA Connection	Add Pump Station	
	Select Location	in table then se	elect Boundary Condition Typ	pe	
River	Reach	RS	Boundary Condition		
1 MailuuSuu	Upstream	38000	Flow Hydrograph		
2 MailuuSuu	Upstream	0	Normal Depth		

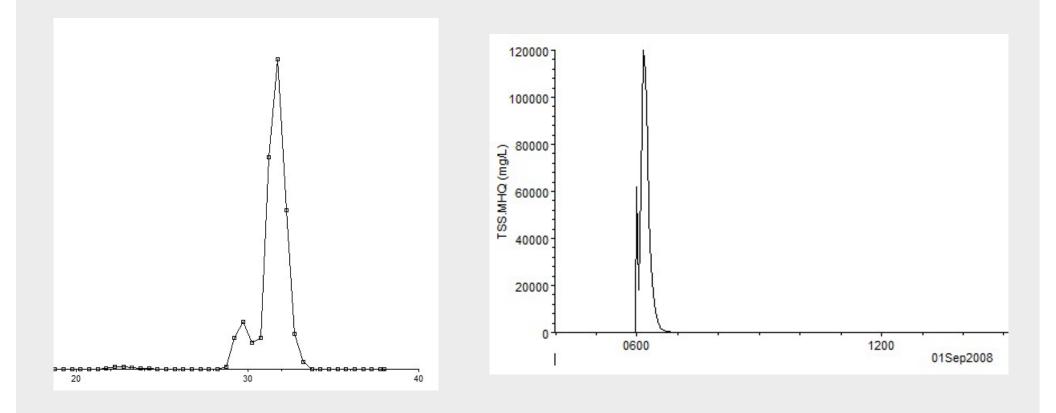

Normal Depth Downstream Boundary	
River: MailuuSuu Reach: U	pstream RS: 0
Friction Slope:	þ.01192

ow Hydrograph	1		
	River:	MailuuSuu Reach: Upstream R	RS: 38000
Read from DSS	before simulation		Select DSS file and Path
File:			
Path:			
Enter Table Select/Enter th Use Simulat		e: 01SEP2008 Time: 0	Data time interval: 1 Hour
No. Ordinates	Interpolate Missir	ng Values Del Row In	s Row
		Hydrograph Data	
	Date	Simulation Time	Flow
		(hours)	(m3/s)
1 31	Aug2008 2400	00:00	65.59
	Sep2008 0100	01:00	65.59
	Sep2008 0200	02:00	65.59
4 01	Sep2008 0300	03:00	65.59
5 01	Sep2008 0400	04:00	65.59
6 01	Sep2008 0500	05:00	65.59
7 01	Sep2008 0600	06:00	65.59
8 01	Sep2008 0700	07:00	65.59
9 01	Sep2008 0800	08:00	65.59
10 01	Sep2008 0900	09:00	65.59
11 01	Sep2008 1000	10:00	65.59
12 01	Sep2008 1100	11:00	65.59
13 01	Sep2008 1200	12:00	65.59
14 01	Sep2008 1300	13:00	65.59
15 01	Sep2008 1400	14:00	65.59



Example: Results of single river section and time

Water Quality Data


Hochschule

	e a Restart File: Iter initial values or co	oncentrations			<u>ک</u>		
200	Show cell Interpo	lated values	Add RS lo	cation(s) to the Table	Update Plot		
	River	Reach	RS	TSS.MHQ(mg/L)	Water Temperature		
	1 MailuuSuu	Upstream	38000	4.06		10	
	2 MailuuSuu	Upstream	37500.0*	4.06		10	
	3 MailuuSuu	Upstream	37000.0*	4.06		10	
	4 MailuuSuu	Upstream	36500.0*	4.06		10	
	5 MailuuSuu	Upstream	36000.0*	4.06		10	
	6 MailuuSuu	Upstream	35500.0*	4.06		10	
122							
				Initial Co.	nditions for Constituent: TSS.MHQ		

				Mass Injectio	ns of Arbitrary Const	ituents		
River	Reach	RS	Constituent	Date (DDMMMYYYY)	Time(HHMM)	Mass (g)	Duration (hrs 0=instantaneous)	Label
1 MailuuSuu	Upstream	33500.0*	TSS.MHQ	01SEP2008	0600	0	0	
2 MailuuSuu	Upstream	33000.0*	TSS.MHQ	01SEP2008	0600	5.579736E+09	0	
3 MailuuSuu	Upstream	32500.0*	TSS.MHQ	01SEP2008	0600	0	0	
4 MailuuSuu	Upstream	31000	TSS.MHQ	01SEP2008	0600	9.399986E+08	0	
5 MailuuSuu	Upstream	24000.0*	TSS.MHQ	0 1SEP2008	0600	5.877046E+07	0	

Example: Results of multiple ponds

Thank you for your attention Time for questions

Thank you for your attention Time for questions

To be continued: Part 2 - A Case Study